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INntroduction

The use of ultrasound in second language acquisition

e Ultrasound (US):

e ultra-high frequency sound waves
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INntroduction

The use of ultrasound in second language acquisition

e Different sounds tend to have distinctive postures.




INntroduction

The use of ultrasound in second language acquisition

e US has been used to help L2ers approach correct articulatory gestures by
visualizing the tongue contours(Gick et al. 2008).

* A typical process of ultrasound-assisted sound training:

Pre-training recording Intervention Post-training recording

Evaluation
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The use of ultrasound in second language acquisition

e US has been used to help L2ers approach correct articulatory gestures by
visualizing the tongue contours(Gick et al. 2008).

* A typical process of ultrasound-assisted sound training:
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INntroduction

The use of ultrasound in second language acquisition

e Usually during the intervention and evaluation:
e a fixed set of criteria has to be made to evaluate the production.

e instructor(s) are usually required to assist the L2er in judging the
goodness of their production based on these criteria.

e these criteria may also need to be calculated with traced tongue
contours.



INntroduction

The use of ultrasound in second language acquisition

e For example, the correctness of /r/ may be assessed by calculating the
curvature index (CI) of the tongue.

1.8612
CI=1.8427

CI=2.1084

Stolar & Gick (2013)
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INntroduction

The use of ultrasound in second language acquisition

* As a consequence, the traditional usage of US:
e Qualitative measure:
e requires trained professionals.

* may exist individual differences for different instructors.

* requires post-training evaluation from instructors/naive native
speakers.



INntroduction

The use of ultrasound in second language acquisition

* As a consequence, the traditional usage of US:
e Quantitative measure:

* requires post-training tongue tracing and calculation.



INntroduction

The use of ultrasound in second language acquisition

e Importantly, the evaluation:
e requires a predetermined set of criteria.

e cannot be done in real time.

10



INntroduction

The potentials of neural networks

e An automated neural network could:
e make consistent evaluations.
* provide the goodness of production in real time.

e avoid the need for a trained professional.
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INntroduction

Ultrasound-only training vs. combination w/ optical input

e A more obvious downside of US is that it lacks the information of lips.

e Several languages distinguish between rounded/unrounded sounds:
i
 \Vowels: e.g., Mandarin /i/ vs. /y/ @ 6:9
/1/ /u/ /y/
e Consonants: secondary coarticulation (e.g. Xw)
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INntroduction

Ultrasound-only training vs. combination w/ optical input

 Combination w/ optical imaging can provide more thorough assessment.
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Goal
Automated assessment w/
ultrasound + optical imaging




Traditional US-assisted training

Automated assessment
w/ US-optical imaging

Qualitative Quantitative
Requirement of fixed Yes Yes No
criteria
Requirement of instructors Yes Yes No

during intervention

Pos-hoc assessment

Evaluation from instructors/
naive native speakers

Tongue-tracing+calculation

Not required

Individual difference Yes No No
v
Timeliness May be quick w/ trained Slow Real-time
experts v
Lip information No No Yes
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Methods

Material selection

e \/owels were chosen to be test cases:
e relative invariance across tme.

e guantifiable continuous properties: tongue height, tongue frontness, lip
roundedness
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Methods

Material selection

* One naive native speaker of Mandarin (male, 24) and one trained
phonetician (male, 26) were recruited to produce the data for model
training.

e All vowels on the IPA vowel chart were produced by the trained phonetician.
Mandarin vowels were produced by the naive Mandarin speaker.

e Repetition: 10 times per vowel for 10 seconds.

18



Methods

Data collection

e Apparatus:

e Ultrasound: e Camera: e Audio:
e« CGM OPUS 5100 e iPad Pro e USBPre?2
e 37 fps e 120 fps e Sampling rate:
44100
eReception e Resolution: 1080
frequency: 4-8.3 e Saved as .wav
MHZz
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Methods

Data preprocessing

* Video alignment based on audio.
* VVowel segment onsets/offsets were marked with Praat's TextGrid.
* Image extraction:

e All ultrasound/optical frames within the vowel segments were extracted.
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Methods

Data preprocessing

e Ultrasound frames were masked to focus on the region of interest.
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Vlethods

Data preprQCeSSiﬂg

e Lip information was extracted with 42 landmarks marked w/ MediaPipe.

Mediapipe
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Methods

Model building

e A spatial transformer network and 2D CNN were used to deal with
ultrasound images.

e FHattened feature maps and traced lip landmarks were then used as input.
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Methods

Model building

* The model predicted four metrics: e Evaluation metrics:
e tongue height (float, 0—1)  Mean squared error (MSE)
e tongue frontness (float, O—1) e Accuracy

* lip roundedness (float, 0—1)

e target vowel (categorical one-
hot encoded array)
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Results

GIL NTU CLABGST M 1.1 TIS 0.5
0170172013 00:35:37 ""'\l""

. predicted vowel: /u/

- height: 0.997

: 1rontness: 2.889
oundedness: 0.999

.
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FOCAL NUMBER FOCAL SPAN DYN GSC PERSIST
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https://drive.google.com/file/d/1SDZJ7GeVRLQxnh0duGn8XzfzsNsAt4gL/view?usp=sharing

Results

Model evaluation

e \Vowel prediction evaluation

e Accuracy:

0.830

2 X precision X recall

e F1(

):0.854

precision + recall

o Recall (

I'P

I'P

o, Precision (

+ FN
I'P

I'P+ FP

): 0.855

): 0.862
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Results

Model evaluation

e \Vowel prediction evaluation

2 X precision X

recall

F 1

precision + recall

I'P
I'P+ FN

Recall (

I'P

Precision (
1P+ FP

Accuracy: 0.830

): 0.855

): 0.862

:0.854
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Results

Model evaluation

Tongue Tongue Lip
frontness height roundedness
MSE 0.031 0.015 0.031
MAE 0.077 0.068 0.064
R2 0.813 0.882 0.871
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Discussion

e The results show the potential for automated speech correction systems.

 Combination of ultrasound and optical imagining promotes a more complete
assessment of the goodness of production.
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Further research

e | arger dataset
 More diverse participants

e \Vowel production from native speakers
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