

Tunghai International Conference on Second Language Teaching and Research (SLTR.THU) Oct. 21, 2023, Taichung, Taiwan

Ultrasonic-and-optical-imaging-assisted automated speech correctness judgment model

Huang, Po-Hsuan 黃柏瑄¹, Liu, Yi-Chen 劉倚辰²

Graduate Institute of Linguistics 語言學研究所¹ Department of Chemical Engineering 化學工程學系² National Taiwan University 國立台灣大學

- Ultrasound (US):
 - ultra-high frequency sound waves
 - can be used to visualize tongue surface

• Different sounds tend to have distinctive postures.

- US has been used to help L2ers approach correct articulatory gestures by visualizing the tongue contours (Gick et al. 2008).
- A typical process of ultrasound-assisted sound training:
 Pre-training recording —> Intervention —> Post-training recording

vention ----> Post-training recording

- US has been used to help L2ers approach correct articulatory gestures by visualizing the tongue contours (Gick et al. 2008).
- A typical process of ultrasound-assisted sound training:

Pre-training recording ----- Intervention ----- Post-training recording

Evaluation

- Usually during the intervention and evaluation:
 - a fixed set of criteria has to be made to evaluate the production.
 - instructor(s) are usually required to assist the L2er in judging the goodness of their production based on these criteria.
 - these criteria may also need to be calculated with traced tongue contours.

curvature index (CI) of the tongue.

• For example, the correctness of /r/ may be assessed by calculating the

- As a consequence, the traditional usage of US:
 - Qualitative measure:
 - requires trained professionals.
 - may exist individual differences for different instructors.
 - speakers.

requires post-training evaluation from instructors/naïve native

- As a consequence, the traditional usage of US:
 - Quantitative measure:
 - requires post-training tongue tracing and calculation.

- Importantly, the evaluation:
 - requires a predetermined set of criteria.
 - cannot be done in real time.

Introduction The potentials of neural networks

- An automated neural network could:
 - make consistent evaluations.
 - provide the goodness of production in real time.
 - avoid the need for a trained professional.

Introduction Ultrasound-only training vs. combination w/ optical input

- A more obvious downside of US is that it lacks the information of lips.
- Several languages distinguish between rounded/unrounded sounds:
 - Vowels: e.g., Mandarin /i/ vs. /y/
 - Consonants: secondary coarticulation (e.g. Xw)

Introduction Ultrasound-only training vs. combination w/ optical input

Combination w/ optical imaging can provide more thorough assessment.

Goal Automated assessment w/ ultrasound + optical imaging

	Traditional US-a	Automated assessmer			
	Qualitative	Quantitative	w/ US-optical imaging		
Requirement of fixed criteria	Yes	Yes	No		
Requirement of instructors during intervention	Yes	Yes	No		
Pos-hoc assessment	Evaluation from instructors/ naïve native speakers	Tongue-tracing+calculation	Not required		
Individual difference	Yes	No	No		
Timeliness	May be quick w/ trained experts	Slow	Real-time		
Lip information	No	No	Yes		

Methods

Material selection

Sound type selection

Number of repetitions

16

Methods Material selection

- Vowels were chosen to be test cases:
 - relative invariance across time.
 - roundedness

• quantifiable continuous properties: tongue height, tongue frontness, lip

Material selection

- One naïve native speaker of Mandarin (male, 24) and one trained phonetician (male, 26) were recruited to produce the data for model training.
- All vowels on the IPA vowel chart were produced by the trained phonetician. Mandarin vowels were produced by the naïve Mandarin speaker.
- Repetition: 10 times per vowel for 10 seconds.

Methods Data collection

- Apparatus:
 - Ultrasound: Camera:
 - CGM OPUS 5100 iPad Pro
 - 37 fps 120 fps
 - Reception frequency: 4-8.3 MHz

- 1 4
- Resolution: 1080

- Audio:
 - USBPre2
 - Sampling rate: 44100
 - Saved as .wav

Methods Data preprocessing

- Video alignment based on audio.
- Vowel segment onsets/offsets were marked with Praat's TextGrid.
- Image extraction:

• All ultrasound/optical frames within the vowel segments were extracted.

Methods Data preprocessing

• Ultrasound frames were masked to focus on the region of interest.

Original Ultrasound Frame

Preprocessed Image

Methods Data preprocessing

Lip information was extracted with 42 landmarks marked w/ MediaPipe.

Methods Model building

- ultrasound images.

• A spatial transformer network and 2D CNN were used to deal with

• Flattened feature maps and traced lip landmarks were then used as input.

Methods Model building

- The model predicted four metrics:
 - tongue height (float, 0-1)
 - tongue frontness (float, 0-1)
 - lip roundedness (float, 0-1)
 - target vowel (categorical onehot encoded array)

- Evaluation metrics:
 - Mean squared error (MSE)
 - Accuracy

Results

predicted vowel: /u/ height: 0.997 frontness: 2.889 roundedness: 0.999

A CONTRACT OF A DESCRIPTION OF A DESCRIP	CGini	GIL NTU		CLA651	MI 1	.1 TIS 0.5
						01/01/20
	FPS 40 D/G 3/4 GN 83 I/P 6/20 PWR 95 FRQ 4-8.3 D 8.8cm					
	PAT: 37 °C TIP: 35 °C	FOCAL NUMBER	FOCAL SPAN		GSC	PERSIST
		LINE DENSITY	FREQUENCY	SEC.WIDTH	SEC.POS	2D REFRESH

Results Model evaluation

Vowel prediction evaluation

• Accuracy: 0.830

• F1
$$(\frac{2 \times precision \times recall}{precision + recall}):0.854$$

• Recall
$$\left(\frac{TP}{TP+FN}\right)$$
: 0.855

Precision
$$\left(\frac{TP}{TP+FP}\right)$$
: 0.862

1955

Results
Model evaluation
• Vowel prediction evaluation
•
$$F1 \left(\frac{2 \times precision \times recall}{precision + recall}\right) : 0.854$$

• Recall $\left(\frac{TP}{TP + FN}\right) : 0.855$
• Precision $\left(\frac{TP}{TP + FP}\right) : 0.862$
Accuracy: 0.830

Confusion Matrix

	а	е	i	0	u	у	æ	ø	œ	e	а	D	С	э	ə	ε	3	в	x	ŧ	I	ш	θ	Œ	ŧ	ΰ	٨	Υ
a -	695	0	12	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0
а 	72	644	302	6	14	0	0	0	0	0	0	0	0	0	- 77	0	0	0	0	10	0	2	0	0	0	0	0	0
:	12	57	914	3		1	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	-	0	0	0	1	0	
1-	52	20	7	272	149	34	1	0	0	0	0	0	0	0	19	0	0	0	0	1	0	0	0	0	0		1	
0 -	-18		,	105	145		_								10					-							-	
u -			3	201	420	51	0	3	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
у-		12	0	э	20	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	13
æ-		0	1	0	0	0	218	0	0	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	,	-	0
ø-	0	0	0	2	0	0	0	208	0	0	0	0	0	0	0	0	0	0	0	2	0	57	0	0	0	0	0	0
œ-	0	0	0	0	0	0	0	0	216	9	0	13	2	0	0	0	0	0	0	0	0	0	0	з	0	0	0	0
e -	0	0	0	0	0	0	0	0	6	267	0	11	6	0	0	0	0	0	0	0	0	0	0	0	0	0	з	0
a -	0	0	0	0	0	0	1	0	0	0	166	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
p -	0	0	0	0	0	0	0	0	0	0	0	231	0	0	0	0	0	0	0	0	0	0	0	4	0	0	з	0
о -	0	0	0	1	0	0	з	0	0	0	0	7	260	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
э-	0	0	0	0	0	0	0	0	0	0	0	0	0	304	0	0	5	0	0	0	1	0	7	0	5	37	0	0
ə -	0	23	18	8	1	1	0	0	0	0	0	0	0	0	422	0	0	0	0	4	0	з	0	0	0	0	0	0
ε-	23	0	0	0	0	0	1	0	0	0	0	0	0	0	0	351	0	0	0	0	0	0	0	0	0	0	0	0
3 -	0	0	0	0	0	0	4	0	0	0	0	0	0	21	0	0	221	0	0	0	0	0	0	0	0	16	0	0
в-	0	0	0	0	0	0	0	0	0	0	0	0	0	з	0	0	з	107	0	0	0	0	13	0	0	0	0	0
γ-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	0	0	153	0	0	56	0	0	0	0	0	0
į-	0	35	0	0	0	0	0	12	0	0	0	0	0	0	24	0	0	0	0	225	0	21	0	0	0	0	0	0
I -	0	0	2	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	293	0	0	0	16	18	0	0
ա -	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	13	0	0	36	0	0	245	0	0	0	0	0	0
ө-	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	5	1	0	0	0	0	166	0	0	1	0	0
œ-	0	0	0	0	0	0	0	0	1	0	0	з	0	0	0	0	0	0	0	0	0	0	0	238	0	0	0	0
и -	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	з	0	0	0	461	11	0	0
υ-	0	0	2	0	0	0	6	0	0	0	0	0	0	16	0	0	1	0	0	0	7	0	2	0	11	153	0	0
۸ -	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	228	0
y -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	270
	4	-	-	-	-	-	-	-	-	-	-	-	1			-	-	-	-	-	-	-	-	-	-	-	-	-
													Pre	dic	tio	ns												

Results Model evaluation

	Tongue frontness	Tongue height	Lip roundedness
MSE	0.031	0.015	0.031
MAE	0.077	0.068	0.064
R ²	0.813	0.882	0.871

Discussion

- The results show the potential for automated speech correction systems.
- Combination of ultrasound and optical imagining promotes a more complete assessment of the goodness of production.

Further research

- Larger dataset
- More diverse participants
- Vowel production from native speakers

More about us

Biomedical and Tissue Engineering Laboratory 生醫與組織工程實驗室

Speech Behavior and Science Lab 語音行為與科學實驗室

