
Production and perception of tonal coarticulation: Evidence from computational 
simulation of communication 

Huang, Po-Hsuan 

Graduate Institute of Linguistics, National Taiwan University 
benson32169@gmail.com 

 
Introduction. Lexical tones have been found to coarticulate with the preceding and following tones (e.g., Xu 1994; Wang 
2002). For instance, Xu (1994) has found that tones after high tone offsets (i.e., 55 and 35 tones) were raised, and those 
after low tone offsets (i.e., 51 and 21 tones) were lowered in Beijing Mandarin (BM). Such tonal coarticulation (TC) has 
also been found in languages including Southern Min (TSM; e.g., Wang 2002), Taiwan Mandarin (TM; e.g., Huang 
2023), etc. Variations induced by such coarticulation have also been found to affect listeners’ perceptions and cause a 
target tone to be perceived as other lexical tones (Xu 1994; Wang 2002). This therefore leads to the question of how tone 
language speakers keep faithful perceptions of tones under TC. In Xu and Zhang et al. (2022), BM speakers have been 
found to cope with such variations with normalization, where tones after high offsets were perceived as lower, and those 
after low offsets as higher. While similar normalizing effects have been found in other languages including TSM and TM 
(Wang 2002; Huang 2023), it may not be the only mechanism used to cope with tone variations induced by TC. 
Specifically, it has been proposed by Huang (2023) that linguistic differences may exist with regard to three aspects: 1) 
the magnitude of TC, 2) the magnitude of normalization for TC, and 3) the ranges of tone acceptance. While Mandarin 
may allow for TC with the listeners being able to retrieve the target tones back through normalization, it might be less 
viable for languages with a larger tone inventory, such as TSM. In TSM, the recoverability of the target tones through 
normalization is lower due to the multiple possible tones that may surface as the same coarticulated tones in the same 
position. TSM users might alternatively reduce such variations by avoiding the same magnitude of TC as Mandarin, or 
by maintaining narrower tone acceptance ranges to keep out coarticulated tones. In Huang, the latter was found. While 
both TM and TSM had similar degrees of TC, TM demonstrated stronger normalization for TC than TSM. On the flip 
side, TSM maintained narrower tone acceptance ranges as compared with TM. It is argued by Huang that such linguistic 
differences resulted from the different tone distributions of TM and TSM. However, since the experiments were 
behavioral experiments conducted on human subjects, multiple aspects need to be factored in, and a direct relation 
between the linguistic differences and tone distributions could not be easily drawn. Computational simulation of real-
world communication may shed light on such an issue. Past studies have proved the ability of communication simulation 
to capture important linguistic features through the interaction of the speaker and listener agents. In Ren et al. (2020), 
compositionality emerged through the training of two neural agents simulating the speaker and the listener. Likewise, in 
Carlsson et al. (2023), it has been found that the joint combination of communication simulation and iterated learning 
could result in efficient color naming systems similar to those found in human languages. In this study, the author uses a 
speaker neural agent and a listener neural agent, modulated by the three aspects proposed by Huang (2023), to simulate 
real-world tone communication under TC, and seeks to provide a more direct observation of the relation between tone 
distributions and the linguistic differences in the production and perception of tonal coarticulation. 
Methods. To simulate tone communication, tone contours were represented as tone onsets and offsets ranging from 1-5, 
based on the five-level tone marks. In TM, there were four tones: (5, 5), (3, 5), (2, 1), and (5, 1). In TSM, an additional 
(3, 3) was added, leading to a larger inventory. The data were generated based on these tones as tone contours, and a TM 
model and a TSM model were trained. To simulate real-world variance, for each tone contour generation, the tone onset 
and offset were randomly sampled on normal distributions with the means being the standard values. To simulate TC 
between the preceding and target tones, for each possible combination, 2048 tokens were generated. Among them, 80% 
were taken as training data, and 20% were taken as validation data. To train the listener agent to recognize the canonical 
tone countours, an additional 2048 tokens were generated for each tone. Two neural agents were constructed with 
multilayer perceptrons (MLP) and trainable parameters to represent the speaker and the listener in communication. During 
each epoch, the listener was first trained with singleton tone contours for four sub-epochs (Phase A) to recognize the 
canonical contours of the tones, and then joined with the speaker and trained with tone contour pairs for another four sub-
epochs (Phase B). There was a total of 256 epochs. In the speaker agent, an MLP was used to simulate coarticulation. A 
value from 0-1 was produced by the MLP, and used as the degree of coarticulation. A value of 1 meant complete 
coarticulation with the preceding tone, while 0 meant no coarticulation at all. The coarticulated tone contour pairs would 
then be taken as the input for the listener (in Phase B). An illustration of the structure of the speaker agent is shown in 
Figure 1. In the listener agent, two trainable parameters and two MLPs were used. The trainable parameters represented 
the tone acceptance ranges as normal distributions for each lexical tone, with one being the mean value of the acceptance 
range, and the other being the standard deviation. For the two MLPs, one was used to represent phonological perception. 
The contours of the target tone were first converted into tone acceptances based on the acceptance distributions and then 
taken by the phonological perception MLP, and an initial prediction of which tones this token might be was produced. If 



the training was in Phase A, the guess would be directly used as the final prediction and evaluated for backpropagation. 
If it was Phase B, the guess would be joined with the contours of the preceding tone as input for the other MLP, which 
was used to allow for normalization of the listener and the final prediction of the target tone would be produced. An 
illustration of the structure of the speaker agent is also shown in Figure 1. 
 

      
Figure 1: Structures of the speaker agent (left) and the listener agent (right). The blue lines indicate the flow of 

Phase A; the red lines indicate the flow of Phase B. 

The three aspects proposed by Huang were evaluated as follows. The mean degree of coarticulation of the speaker during 
validation was taken as the magnitude of coarticulation. For normalization for TC, following Zhang et al. (2022), a series 
of target tones simulating the continuum from the low tone (21) to the falling tone (51) following the different preceding 
tones were predicted by the TM and TSM models. If normalization was at work, a preceding tone with high offsets (e.g., 
55 and 35) would lead the target tone to be perceived as lower, and it would have to be very close to a canonical 51 to be 
perceived as a falling tone, and vice versa. Finally, tone acceptance ranges were assessed by the standard deviations of 
the tone acceptance ranges during validation. A smaller deviation would indicate a narrower tone acceptance range. 
Results. The accuracies of the TM model and TSM models were 0.62 and 0.54. This relatively low performance was 
understandable since variances were intentionally introduced to mimic real-world speech. The mean degrees of 
coarticulation in the TM and TSM models were 0.43 and 0.46. TSM therefore did not seem to have a lower magnitude of 
coarticulation. The magnitudes of normalization for TC in the two models are shown in Figure 2. As can be seen, 
compared with TSM, the TM model was more subject to the offset height of the preceding tones, as indicated by the 
interval (1.40) between the orange line (51 as the preceding tone) and the green/blue lines (35 and 55 as the preceding 
tones) at the 0.5 midpoint, which is much larger than the one in the TSM model (1.20). 
 

 
Figure 2:Normalization of the listener neural agent for different preceding tones on a low-to-falling tone 

continuum (left: TM; right: TSM). 

Finally, the mean standard deviations of the TM and TSM models were 2.30 and 2.28, suggesting generally narrower 
tone acceptance ranges in the TSM model than in the TM model. 
Discussion. The results of the simulation in general supported the hypothesis that different tone distributions could lead 
to different strategies in dealing with the tone variations induced by TC. Specifically, by simulating the respective tone 
inventories of TM and TSM, the two models largely replicated the findings in Huang (2023) on human subjects. Similar 
to Huang’s production experiment results, the degrees of TC in the two models were rather comparable; while TSM had 
a more complex tone inventory, it did not reduce the degree of TC. On the flip side, linguistic differences were found in 
terms of perception. Like TSM speakers, the TSM model demonstrated a smaller magnitude of normalization for TC, as 
compared with the TM model. Similarly, like its real-world counterparts, the TSM model maintained generally narrower 
ranges of tone acceptance than the TM model. In Huang (2023), it is explained that, while TSM could not rely as much 
on normalization as Mandarin due to the lower recoverability of the target tones, it could use stricter tone acceptance 
ranges to filter out coarticulated tones that could potentially be confused with other lexical tones, in turn reducing its 



reliance on normalization. The results of the simulation in this study therefore supported such an explanation by 
manipulating the tone distributions of the models. In general, this study demonstrates the possibility of simulating real-
world communication and human cognitive mechanisms as well as its ability to allow for more direct explanations of 
production and perception behaviors through computational simulation based on the interaction of the speaker and listener 
agents. 
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